Advertisements
Advertisements
प्रश्न
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
उत्तर
Taking x = tan A, y = tan B and z = tan C
`(2x)/(1 - x^2) = (2tan"A")/(1 - tan^2"A")`
= tan 2A
Similarly, `(2y)/(1 - y^2) = tan 2"B"` and `(2z)/(1 - z^2)` = tan 2C
Given x + y + x = xyz
(i.e) we are given tan A + tan B + tan C = tan A tan B tan C
⇒ A+B+C = 180°
⇒ A + B = 180° – C
Multiply 2 on both sides
⇒ 2A + 2B = 360° – 2C
2(A + B) =360° – 2C
⇒ tan(2A + 2B) = tan(360° – 2C)
= – tan 2C
(i.e) `(tan 2"A" + tan 2"B")/(1 - tan 2"A" tan 2"B")` = – tan 2C
⇒ tan 2A + tan 2B = – tan 2C [1 – tan 2A tan 2B]
⇒ tan 2A + tan 2B = – tan 2C + tan 2A tan 2B tan 2C
⇒ tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
(i.e.) `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) xx (2y)/(1 - y^2) xx (2z)/(1 - z^2)`
APPEARS IN
संबंधित प्रश्न
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find the value of cos 105°.
Find a quadratic equation whose roots are sin 15° and cos 15°
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
cos 35° – cos 75°
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =