Advertisements
Advertisements
प्रश्न
Find a quadratic equation whose roots are sin 15° and cos 15°
उत्तर
sin 15° = sin(45° – 30°)
= sin 45°. cos 30° – cos 45°. sin 30°
= `1/sqrt(2) * sqrt(3)/2 - 1/sqrt(2) * 1/2`
sin 15° = `1/(2sqrt(2)) (sqrt(3) - 1)` ......(1)
cos 15° = cos(45° – 30°)
= cos 45° . cos 30° + sin 45° . sin 30°
= `1/sqrt(2) * sqrt(3)/2 + 1/sqrt(2) * 1/2`
sin 15° = `1/(2sqrt(2)) (sqrt(3) + 1)` ......(2)
The quadratic whose roots cos 15° and sin 15° is
x2 – (cos 15° + sin 15°)x + (cos 15°) (sin 15°) = 0 ......(3)
cos 15° + sin 15° = `1/(2sqrt(2)) (sqrt(3) + 1) + 1/(2sqrt(2)) (sqrt(3) - 1)`
= `1/(2sqrt(2)) (sqrt(3) + 1 + sqrt(3) - 1)`
= `(2sqrt(3))/(2sqrt(2))`
= `sqrt(3)/sqrt(2)`
= `sqrt(3)/sqrt(2) xx sqrt(2)/sqrt(2)`
= `sqrt(6)/2`
(cos 15°) (sin 15°) = `1/(2sqrt(2)) (sqrt(3) + 1) * 1/(2sqrt(2)) (sqrt(3) - 1)`
= `1/(4(2)) * (3 - 1)`
= `2/8`
= `1/4`
Substituting in equation (3) we have
`x^2 - sqrt(6)/2x + 1/4` = 0
`4x^2 - 2sqrt(6)x + 1` = 0
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Find the value of sin 105°
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that sin(π + θ) = − sin θ.
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Express the following as a product
sin 50° + sin 40°
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =