Advertisements
Advertisements
प्रश्न
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
उत्तर
cos5θ = cos(2θ + 3θ)
= cos 2θ cos 3θ – sin 2θ sin 3θ
= (2 cos2θ – 1)(4 cos3θ – 3 cos θ) – 2 sin θ cos θ(3 sin θ – 4 sin3θ)
= 8cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 sin2θ cos θ + 8 cos θ sin4θ
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6(1 – cos2θ) cos θ + 8 cos θ(1 – cos2θ)2
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 cos θ + 6 cos3θ + 8 cos 0(1+ cos4θ – 2 cos2θ)
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 cos θ + 6 cos3θ + 8 cos θ + 8 cos5θ – 16 cos3θ
= 16 cos5θ – 20 cos3θ + 5 cos θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Find the value of sin 105°
Show that tan 75° + cot 75° = 4
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =