Advertisements
Advertisements
प्रश्न
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
उत्तर
sin 4α = sin 2(2α)
= `(2tan(2alpha))/(1 + tan^2 (2alpha))`
= `(2((2tan alpha)/(1 - tan^2 alpha)))/(1 + ((2 tan alpha)/(1 - tan^2 alpha))^2`
= `((4 tan alpha)/(1 - tan^2 alpha))/(((1 - tan^2 alpha)^2 + 4 tan^2 alpha)/(1 - tan^2 alpha)^2)`
= `(4 tan alpha (1 - tan^2 alpha))/(1 + tan^2 alpha - 2 tan^2 alpha + 4 tan^2 alpha)`
= `(4 tan alpha (1 - tan^2 alpha))/(1 + 2 tan^2 alpha + tan^4 alpha)`
sin 4α = `(4 tan alpha (1 - tan^2 alpha))/(1 + tan^2 alpha)^2`
APPEARS IN
संबंधित प्रश्न
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Express the following as a sum or difference
sin 5θ sin 4θ
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1