Advertisements
Advertisements
प्रश्न
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
उत्तर
We have to prove that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
L.H.S = `cot(7 1^circ/2)`
= `(cos(7 1^circ/2))/(sin(7 1^circ/2))`
To find `costheta/sintheta`, multiply numerator and denominator by 2 cos θ
Let θ = `71/2^circ`
2θ = 15°
`(2cos^2theta)/(2sin theta cos theta) = (1 + cos 2theta)/(sin 2theta)`
= `(1 + cos 15^circ)/(sin 15^circ)`
= `((1 + sqrt(3) + 1)/(2sqrt(2)))/((sqrt(3) - 1)/(2sqrt(2))`
= `(2sqrt(2) + sqrt(3) + 1)/(sqrt(3) - 1)`
Multiply numerator and denominator by `sqrt(3) + 1`
= `((2sqrt(2) + sqrt(3) + 1)(sqrt(3) + 1))/((sqrt(3) - 1)(sqrt(3) + 1))`
= `(2sqrt(2) + 3 + sqrt(3) + 1)/(3 - 1)`
= `(2sqrt(3) + 2sqrt(2) + 4)/2`
= `(2(sqrt(2) + sqrt(3) + sqrt(6) + 2))/2`
= `sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Express the following as a product
cos 65° + cos 15°
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =