Advertisements
Advertisements
प्रश्न
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
उत्तर
Given sin x = `15/17, 0 < x < pi/2`
We have cos2x + sin2x = 1
∴ cos2x = 1 – sin2x
= `1 - (15/17)^2`
= `1 - 225/289`
cos2x = `(289 - 225)/289 = 64/289`
cos x = `+- sqrt(64/289)`
= `+- 8/17`
Given that `0 < x < pi/2`, that is x lies in the first quadrant
∴ cos x is positive.
cos x = `8/17`
Also given cos y = `12/13, 0 < x < pi/2`
We have cos2y + sin2y = 1
sin2y = 1 – cos2y
sin2y = `1 - (12/13)^2 = 1 - 14/169`
sin2y = `(169 - 144)/169 = 25/169`
sin y = `+- sqrt(25/169) = +- 5/13`
Since `0 < y < pi/2, y lies in the first quadrant sin y is positive.
∴ sin y = `5/13`
sin x = `15/17`
sin y = `5/13`
cos x = `8/17`
cos y = `12/13`
tan(x + y)
tan x = `sinx/cosx = (15/17)/(8/17) = 15/8`
tan y = `siny/cosy = (5/13)/(12/13) = 5/12`
tan(x + y) = `(tanx + tany)/(1 - tanx tany)`
= `(15/8 + 5/12)/(1 - 15/8*5/12)`
= `((180 + 40)/96)/((96 - 75)/96)`
tan(x + y) = `220/21`
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of sin 105°
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that sin 75° – sin 15° = cos 105° + cos 15°
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
2 sin 10θ cos 2θ
Show that sin 12° sin 48° sin 54° = `1/8`
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`