Advertisements
Advertisements
प्रश्न
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
उत्तर
L.H.S = `(cos("A" + 15^circ))/(sin("A" + 15^circ)) - (sin("A" - 15^circ))/(cos("A" - 15^circ))`
= `(cos("A" + 15^circ)cos("A" - 15^circ) - sin("A" + 15^circ)sin("A" - 15^circ))/(sin("A" + 15^circ) cos("A" - 15^circ))`
= `(cos("A" + 15^circ + "A" - 15^circ))/(1/2[sin("A" + 15^circ + "A" - 15^circ) + sin("A" + 15^circ - "A" + 15^circ)]`
= `(2cos2"A")/(sin2"A" + sin30^circ)`
= `(2cos2"A")/(1/2 + sin2"A")`
= `(4cos2"A")/(1 + 2sin 2"A")`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =