Advertisements
Advertisements
प्रश्न
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
उत्तर
`((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta)) = ((cos 3theta -cos theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 6theta - cos 4theta))`
= `(2sin((3theta + theta)/2) sin ((theta - 3theta)/2) * 2sin((8theta + 20)/2) cos((8theta - 2theta)/2))/((2cos((5theta + theta)/2) * sin((5theta - theta)/2) * 2sin((6theta - 4theta)/2) sin((4theta - 6theta)/2)`
= `(sin 2theta* sin(- theta) *sin 5theta * cos 3theta)/(cos3theta * sin 2theta * sin 5theta * sin (- theta))`
= 1
APPEARS IN
संबंधित प्रश्न
Find the values of sin (– 1110°)
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Show that tan 75° + cot 75° = 4
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
2 sin 10θ cos 2θ
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1