Advertisements
Advertisements
प्रश्न
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
उत्तर
L.H.S = cos 8θ cos 2θ
= cos(5θ + 3θ) cos(5θ – 3θ)
We know cos(A + B) cos(A – B)
= cos2 A – sin2 B
∴ cos(5θ + 3θ) cos(5θ – 3θ) = cos25θ – sin23θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Prove that cos(π + θ) = − cos θ
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1