Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
उत्तर
We know that cos2θ + sin2θ = 1
`(2/3)^2 + sin^2theta` = 1
`4/9 + sin^2theta` = 1
sin2θ = `1 - 4/9`
sin2θ = `(9 - 4)/9 = 5/9`
sin θ = `+- sqrt(5)/3`
Since θ lies in the I quadrant all trigonometric functions are positive.
sin θ = `sqrt(5)/3`, cosec θ = `1/sintheta = 3/sqrt(5)`
cos θ = `2/3`, sec θ = `1/costheta = 3/2`
tan θ = `sintheta/costheta = (sqrt(5)/3)/(2/3) = sqrt(5)/2`
cot θ = `costheta/sintheta = (2/3)/(sqrt(5)/3) = 2/sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find a quadratic equation whose roots are sin 15° and cos 15°
Show that tan 75° + cot 75° = 4
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Express the following as a product
cos 35° – cos 75°
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`