Advertisements
Advertisements
प्रश्न
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
उत्तर
Nr: (sin x + sin 7x) + (sin 3x + sin 5x)
= `[2sin (7x + x)/2 cos (7x - x)/2] + [2sin (5x + 3x)/2 cos (5x - 3x)/2]`
= 2 sin 4x cos 3x + 2 sin 4x cos x
= 2 sin 4x (cos 3x + cos x) .....(1)
Dr. (cos x + cos 7x) + (cos 3x + cos 5x)
= `[2cos (7x + x)/2 cos (7x - x)/2] + [2cos (5x + 3x)/2 cos (5x - 3x)/2]`
= 2 cos 4x cos 3x + 2 cos 4x cosx
= 2 cos 4x (cos 3x + cos x) .....(2)
L.H.S = `((1))/((2))`
= `(2sin 4x(cos 3x + cos x))/(2cos 4x(cos 3x + cos x))`
= tan 4x
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Show that tan 75° + cot 75° = 4
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
cos 5θ cos 2θ
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =