Advertisements
Advertisements
प्रश्न
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
उत्तर
Nr: (sin x + sin 7x) + (sin 3x + sin 5x)
= `[2sin (7x + x)/2 cos (7x - x)/2] + [2sin (5x + 3x)/2 cos (5x - 3x)/2]`
= 2 sin 4x cos 3x + 2 sin 4x cos x
= 2 sin 4x (cos 3x + cos x) .....(1)
Dr. (cos x + cos 7x) + (cos 3x + cos 5x)
= `[2cos (7x + x)/2 cos (7x - x)/2] + [2cos (5x + 3x)/2 cos (5x - 3x)/2]`
= 2 cos 4x cos 3x + 2 cos 4x cosx
= 2 cos 4x (cos 3x + cos x) .....(2)
L.H.S = `((1))/((2))`
= `(2sin 4x(cos 3x + cos x))/(2cos 4x(cos 3x + cos x))`
= tan 4x
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Prove that sin 105° + cos 105° = cos 45°
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
sin 5θ sin 4θ
Express the following as a product
sin 75° sin 35°
Express the following as a product
sin 50° + sin 40°
Express the following as a product
cos 35° – cos 75°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =