Advertisements
Advertisements
प्रश्न
Express the following as a product
sin 75° sin 35°
उत्तर
We know sin C – sin D = `2 cos ("C" + "D")/2 * sin ("C" - "D")/2`
Take C = 75°, D = 35°
sin 75° – sin 35° = `2cos((75^circ + 35^circ)/2) * sin((75^circ - 35^circ)/2)`
sin 75° – sin 35° = `2cos(110^circ/2) * sin(40^circ/2)`
sin 75° – sin 35° = 2 cos 55° sin 20°
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of sin (– 1110°)
Find the values of tan(1050°)
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of tan `(7pi)/12`
Prove that cos(π + θ) = − cos θ
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to