Advertisements
Advertisements
प्रश्न
Express the following as a product
sin 75° sin 35°
उत्तर
We know sin C – sin D = `2 cos ("C" + "D")/2 * sin ("C" - "D")/2`
Take C = 75°, D = 35°
sin 75° – sin 35° = `2cos((75^circ + 35^circ)/2) * sin((75^circ - 35^circ)/2)`
sin 75° – sin 35° = `2cos(110^circ/2) * sin(40^circ/2)`
sin 75° – sin 35° = 2 cos 55° sin 20°
APPEARS IN
संबंधित प्रश्न
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Find the value of cos 105°.
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a sum or difference
cos 5θ cos 2θ
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C