Advertisements
Advertisements
प्रश्न
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
उत्तर
`sin (pi/4 - theta/2)`, when sin θ = `1/25`
`sin (pi/4 - theta/2) = sqrt((1 - cos2(pi/4 - theta/2))/2`
= `sqrt((1 cos(pi/2 - theta))/2`
= `sqrt((1 - sin theta)/2`
= `sqrt((1 - 1/25)/2`
= `sqrt((25 - 1)/50`
= `sqrt(24/50)`
= `sqrt(12/25)`
= `sqrt((4 xx 3)/(5 xx 5)`
= `(2sqrt(3))/5`
APPEARS IN
संबंधित प्रश्न
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Find the value of cos 105°.
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
cos 5θ cos 2θ
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =