Advertisements
Advertisements
प्रश्न
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
उत्तर
`32sqrt(3)[sin pi/48 xx cos pi/48] = 16sqrt(3)[2sin pi/48 cos pi/48]`
= `16sqrt(3) sin pi/24((2pi)/48 = pi/24)`
Now `16sqrt(3)[sin pi/24 xx cos pi/24]`
= `8sqrt(3)[2 sin pi/24 cos pi/24]`
= `8sqrt(3)[sin (2pi)/24]`
= `8sqrt(3) sin pi/12`
Now `8sqrt(3)[sin pi/12 cos pi/12]`
= `4sqrt(3)[2 sin pi/12 cos pi/12]`
= `4sqrt(3)[sin (2pi)/12]`
= `4sqrt(3)(sin pi/6)`
Now `4sqrt(3) sin pi/6 cos pi/6 = 2sqrt(3)[2sin pi/6 cos pi/6]`
`2sqrt(3)[sin (2pi)/6] = 2sqrt(3) sin pi/3`
= `2sqrt(3) xx sqrt(3)/2`
= 3
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of tan `(7pi)/12`
Prove that sin(π + θ) = − sin θ.
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
sin 75° sin 35°
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =