Advertisements
Advertisements
प्रश्न
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
उत्तर
Now A + B + C = 180°
So B + C = 180° – A
sin(B + C – A) = sin(180° – A – A)
= sin(180° – 2A) = sin 2A
Now L.H.S = sin 2A + sin 2B + sin 2C
= 4 sin A sin B sin C ......[From (i)]
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find the value of cos 105°.
Find the value of sin 105°
Show that tan 75° + cot 75° = 4
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1