Advertisements
Advertisements
प्रश्न
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
उत्तर
sec β = ` 5/3`
sec2β – tan2β = 1
sec2β – 1 = tan2β
tan2β = `(- 5/3)^2 - 1`
= `25/9 - 1`
tan2β = `(25 - 9)/9`
= `16/9`
tan β = `+- 4/3`
Given that β lies in the second quadant.
tan β is negative.
∴ tan β = `- 4/3`
tan(α + β) = `(tan alpha + tan beta)/(1 - tan alpha tan beta)`
= `(2 - 4/3)/(1 - 2 xx (- 4/3))`
= `((6 - 4)/3)/(1 + 8/3)`
= `((6 - 4)/3)/((3 + 8)/3)`
tan(α + β) = `2/11`
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of `sin (-(11pi)/3)`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find the value of cos 105°.
Find the value of sin 105°
Prove that sin(π + θ) = − sin θ.
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Show that tan 75° + cot 75° = 4
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =