Advertisements
Advertisements
प्रश्न
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
उत्तर
`tan(pi/4 + theta) = (tan pi/4 + tan theta)/(1 - tan pi/4 * tan theta)`
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)` .....(1)
`tan ((3pi)/4 +theta) = (tan (3pi)/4 + tan theta)/(1 - tan (3pi)/4 * tan theta)`
= `(tan(pi - pi/4) tan theta)/(1 - tan(pi - pi/4) tan theta)`
= `(- tan pi/4 + tan theta)/(1 + tan pi/4 * tan theta)`
`tan((3pi)/4 + theta) = (-1 + tan theta)/(1 + tan theta)` .....(2)
From equation (1) and (2) we have
`tan(pi/4 + theta) * tan((3pi)/4 + theta)`
= `(1 + tan theta)/(1 - tan theta) xx (-(1 - tan theta))/(1 + tan theta)`
= – 1
APPEARS IN
संबंधित प्रश्न
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =