Advertisements
Advertisements
प्रश्न
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
उत्तर
tan x = `"n"/("n" + 1)`, tan y = `1/(2"n" + 1)`
tan(x + y) = `(tanx + tany)/(1 - tanx tany)`
= `("n"/("n" + 1) + 1/(2"n" + 1))/(1 - "n"/("n" + 1) * 1/(2"n" + 1))`
= `(("n"(2"n" + 1) + "n" + 1)/(("n" + 1)(2"n" + 1)))/((("n" + 1)(2"n" + 1) - "n")/(("n" + 1)(2"n" + 1))`
= `("n"(2"n" + 1) + "n" + 1)/(("n" + 1)(2"n" + 1) - "n")`
= `(2"n"^2 + "n" + "n" + 1)/(2"n"^2 + "n" + 2"n" + 1 - "n")`
= `(2"n"^2 + 2"n" + 1)/(2"n"^2 + 2"n" + 1)`
tan(x + y) = 1
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that sin 105° + cos 105° = cos 45°
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a product
cos 65° + cos 15°
Express the following as a product
sin 50° + sin 40°
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =