Advertisements
Advertisements
प्रश्न
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
उत्तर
Given sin x = `15/17, 0 < x < pi/2`
We have cos2x + sin2x = 1
∴ cos2x = 1 – sin2x
= `1 - (15/17)^2`
= `1 - 225/289`
cos2x = `(289 - 225)/289 = 64/289`
cos x = `+- sqrt(64/289)`
= `+- 8/17`
Given that `0 < x < pi/2`, that is x lies in the first quadrant
∴ cos x is positive.
cos x = `8/17`
Also given cos y = `12/13, 0 < x < pi/2`
We have cos2y + sin2y = 1
sin2y = 1 – cos2y
sin2y = `1 - (12/13)^2 = 1 - 14/169`
sin2y = `(169 - 144)/169 = 25/169`
sin y = `+- sqrt(25/169) = +- 5/13`
Since `0 < y < pi/2, y lies in the first quadrant sin y is positive.
∴ sin y = `5/13`
sin x = `15/17`
sin y = `5/13`
cos x = `8/17`
cos y = `12/13`
cos(x – y) = cos x cos y + sin x sin y
= `8/17*12/13 + 15/17*5/13`
cos(x – y) = `96/221 + 75/221`
= `171/221`
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
Find the values of tan(1050°)
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
Find the value of cos 105°.
Show that tan 75° + cot 75° = 4
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a sum or difference
sin 5θ sin 4θ
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to