Advertisements
Advertisements
Question
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Solution
Given sin x = `15/17, 0 < x < pi/2`
We have cos2x + sin2x = 1
∴ cos2x = 1 – sin2x
= `1 - (15/17)^2`
= `1 - 225/289`
cos2x = `(289 - 225)/289 = 64/289`
cos x = `+- sqrt(64/289)`
= `+- 8/17`
Given that `0 < x < pi/2`, that is x lies in the first quadrant
∴ cos x is positive.
cos x = `8/17`
Also given cos y = `12/13, 0 < x < pi/2`
We have cos2y + sin2y = 1
sin2y = 1 – cos2y
sin2y = `1 - (12/13)^2 = 1 - 14/169`
sin2y = `(169 - 144)/169 = 25/169`
sin y = `+- sqrt(25/169) = +- 5/13`
Since `0 < y < pi/2, y lies in the first quadrant sin y is positive.
∴ sin y = `5/13`
sin x = `15/17`
sin y = `5/13`
cos x = `8/17`
cos y = `12/13`
cos(x – y) = cos x cos y + sin x sin y
= `8/17*12/13 + 15/17*5/13`
cos(x – y) = `96/221 + 75/221`
= `171/221`
APPEARS IN
RELATED QUESTIONS
Find the values of cot(660°)
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a product
cos 35° – cos 75°
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to