Advertisements
Advertisements
Question
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Solution
We know sin2θ + cos2θ = 1
`sin^2theta + (-1/2)^2` = 1
`sin^2theta + 1/4` = 1
sin2θ = `1 - 1/4 = 3/4`
sin θ = `+- sqrt(3)/2`
sin θ = `- sqrt(3)/2`,
cosec θ = `- 2/sqrt(3)`
tan θ = `sintheta/costheta = (-sqrt(3)/2)/(- 1/2) = sqrt(3)`
cot θ = `1/tantheta = 1/sqrt(3)`
sec θ = `1/costheta = 1/(-1/2)` = – 2
APPEARS IN
RELATED QUESTIONS
Find the values of `sin (-(11pi)/3)`
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Prove that cos(π + θ) = − cos θ
Find a quadratic equation whose roots are sin 15° and cos 15°
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
sin 75° sin 35°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is