Advertisements
Advertisements
Question
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is
Options
sin A + sin B + sin C
1
0
cos A + cos B + cos C
Solution
0
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Express the following as a product
sin 50° + sin 40°
Express the following as a product
cos 35° – cos 75°
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to