Advertisements
Advertisements
Question
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Solution
A + B + C = 180°
Given A = 90°
∴ B + C = 90°
⇒ `("B" + "C")/2` = 45°
`"B"/2 + "C"/2` = 45°
R.H.S = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
= `1 + sqrt(2) (2cos "B"/2 sin "C"/2)`
We know that 2 cosA sinB = sin(A + B) – sin(A – B)
= `- 1 + sqrt(2) (sin (("B" + "C"))/2 - sin (("B" - "C"))/2)`
= `- 1 + sqrt(2) (sin 45^circ - sin (("B" - "C"))/2)`
= `- 1 + sqrt(2) (1/sqrt(2) - sin (("B" - "C")^2)/2)`
= `- 1 + 1 - sqrt(2) sin (("B" - "C"))/2`
= `- sqrt(2) sin (("B" - "C"))/2` .....(1)
L.H.S = cos B – cos C
= `2 sin (("B" + "C"))/2 sin (("C" - "B"))/2`
= `2 sin 45^circ sin (("C" - "B"))/2`
= `2(1/sqrt(2)) sin ((-("B" - "C"))/2)`
= `- sqrt(2) sin (("B" - "C"))/2` .....(2)
From (1) and (2)
⇒ L.H.S = R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Express the following as a sum or difference
2 sin 10θ cos 2θ
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is