Advertisements
Advertisements
Question
Express the following as a sum or difference
2 sin 10θ cos 2θ
Solution
2 sin 10θ cos 2θ
We know
2 sin A cos B = sin(A + B) + sin(A – B)
Take A = 10θ, B = 2θ
2 sin 10θ . cos 2θ = sin(10θ + 2θ) + sin(10θ – 2θ)
2 sin 10θ . cos 2θ = sin 12 θ + sin 8θ
2 sin 10θ . cos 2θ = `1/2`[sin 12θ + sin 8θ]
APPEARS IN
RELATED QUESTIONS
Find the values of sin(480°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`