Advertisements
Advertisements
Question
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Solution
we know sin2A + cos2A = 1
sin2A = 1 – cos2A
= `1 - (15/17)^2`
= `1 - 225/289`
= `(289 - 225)/289`
sin2A = `64/289`
sin A = `+- sqrt(64/289)`
= `+- 8/17`
Since A lies in the first quadrant, sin A is positive
∴ sin A = `8/17`
cos 2A = cos2A – sin2A
= `(15/17)^2 - 64/289`
=`225/289 - 64/289`
= `(225- 64)/289`
= `161/289`
APPEARS IN
RELATED QUESTIONS
Find the values of cos(300°)
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find a quadratic equation whose roots are sin 15° and cos 15°
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =