English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Find the value of cos 2A, A lies in the first quadrant, when cos A = 1517 - Mathematics

Advertisements
Advertisements

Question

Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`

Sum

Solution

we know sin2A + cos2A = 1

sin2A = 1 – cos2A

= `1 - (15/17)^2`

= `1 - 225/289`

= `(289 - 225)/289`

sin2A = `64/289`

sin A = `+- sqrt(64/289)`

= `+- 8/17`

Since A lies in the first quadrant, sin A is positive

∴ sin A = `8/17`

cos 2A = cos2A – sin2A

= `(15/17)^2 - 64/289`

=`225/289 - 64/289`

= `(225- 64)/289`

= `161/289`

shaalaa.com
Trigonometric Functions and Their Properties
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.5 [Page 117]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.5 | Q 1. (i) | Page 117

RELATED QUESTIONS

Find the values of cos(300°)


Find the values of `sin (-(11pi)/3)`


Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant


Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ


If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)


Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`


Find a quadratic equation whose roots are sin 15° and cos 15°


Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`


Prove that cos 8θ cos 2θ = cos25θ – sin2


Prove that `32(sqrt(3)) sin  pi/48  cos  pi/48  cos  pi/24  cos  pi/12  cos  pi/6` = 3


Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1


Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x


Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`


If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C


If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C


If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C


Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` = 


Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to


Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×