Advertisements
Advertisements
Question
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Solution
L.H.S = (sin 2A + sin 2B) + sin 2C
= 2 sin(A + B) cos(A – B) + 2 sin C cos C
= 2 sin(90° – C) cos(A – B) + 2 sin C cos C
= 2 cos C [cos (A – B) + sin C] + cos(A + B) .....(∴ A + B = `π/2` – C)
= 2 cos C [cos(A – B) + cos(A + B)]
= 2 cos C [2 cos A cos B]
= 4 cos A cos B cos C
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find the values of cot(660°)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a product
sin 50° + sin 40°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is