Advertisements
Advertisements
प्रश्न
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
उत्तर
L.H.S = (sin 2A + sin 2B) + sin 2C
= 2 sin(A + B) cos(A – B) + 2 sin C cos C
= 2 sin(90° – C) cos(A – B) + 2 sin C cos C
= 2 cos C [cos (A – B) + sin C] + cos(A + B) .....(∴ A + B = `π/2` – C)
= 2 cos C [cos(A – B) + cos(A + B)]
= 2 cos C [2 cos A cos B]
= 4 cos A cos B cos C
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Prove that cos(π + θ) = − cos θ
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Express the following as a sum or difference
sin 5θ sin 4θ
Show that sin 12° sin 48° sin 54° = `1/8`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is