Advertisements
Advertisements
प्रश्न
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
उत्तर
L.H.S = cos(A + B) cos(A – B)
= (cos A cos B – sin A sin B)(cos A cos B + sin (A sin B)
= cos2A cos2B – sin2A sin2B
= cos2A (1 – sin2B) – (1 – cos2A) sin2B
= cos2A – cos2A sin2B – sin2B + cos2A sin2B
= cos2A – sin2B
= R.H.S
Now cos2A – sin2B = (1 – sin2A) – (1 – cos2B)
= 1 – sin2A – 1 + cos2B
= cos2B – sin2A
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
sin 75° sin 35°
Express the following as a product
sin 50° + sin 40°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =