Advertisements
Advertisements
प्रश्न
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
उत्तर
LHS = (sin 2A + sin 2B) + sin 2C
= 2 sin(A + B) cos(A – B) + 2 sin C cos C
[sin(A + B) = sin(180° – C) = sin C]
= 2 sin C cos(A – B) + 2 sin C cos C
= 2 sin C [cos(A – B) + cos C]
{cos C = cos[180° – (A + B)] = – cos (A + B)}
= 2 sin C [cos(A – B) – cos(A + B)]
= `2sin"C"{2sin (2"A")/2 sin (2"B")/2}`
= 4 sin A sin B sin C
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find the value of cos 105°.
Find the value of tan `(7pi)/12`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Show that tan 75° + cot 75° = 4
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a sum or difference
cos 5θ cos 2θ
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =