Advertisements
Advertisements
प्रश्न
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
उत्तर
L.H.S = `(1 - cos2"A")/2 + (1 - cos2"B")/2 + (1 - cos 2"C")/2`
Hint: `[sin^2"A" = (1 - cos2"A")/2]`
= `3/2 - 1/2[cos2"A" + cos2"B" + cos2"C"]`
= `3/2 - 1/2 [2cos("A" + "B") cos("A" - "B") + 2cos^2"C" - 1]`
= `3/2 - cos("A" + "B") cos("A" - "B") - cos^2"C" + 1/2`
= 2 + cos C cos(A – B) – cos2
= 2 + cosC[cos(A – B)(cos(A + B)]
[cos(180° – C) – cos C – cos C]
= 2 + cos C [cos(A – B) + cos(A + B)]
= 2+ cos C[2 cos A cos B]
= 2 + 2 cos A cos B cos C
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a product
sin 75° sin 35°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`