Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
उत्तर
We know that sec2θ – tan2θ = 1
`(13/2)^2 - tan^2theta` = 1
`169/25 - 1` = tan2θ
tan2θ = `(169 - 25)/25 = 144/25`
tan θ = `+- 12/5`
Since θ lies in the fourth quadrant tan θ is negative.
∴ tan θ = `- 12/5`
cos θ = `1/sectheta = 5/13`
We know sin2θ + cos2θ = 1
`sin^2theta + (5/13)^2` = 1
sin2θ = `1 - 25/169`
sin2θ = `(169 - 25)/169 = 144/169`
sin θ = `+- 12/13`
Since θ lies in the fourth quadrant sin θ is negative.
∴ sin θ = `- 12/13`
sin θ = `- 12/13`, cosec θ = `1/sintheta = - 13/12`
cos θ = `5/13`, sec θ = `1/costheta = 13/5`
tan θ = `- 12/5`, cot θ = `1/tantheta = - 5/12`
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of cot(660°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Find the value of sin 105°
Find the value of tan `(7pi)/12`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Show that tan 75° + cot 75° = 4
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =