Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
उत्तर
We know that sec2θ – tan2θ = 1
`(13/2)^2 - tan^2theta` = 1
`169/25 - 1` = tan2θ
tan2θ = `(169 - 25)/25 = 144/25`
tan θ = `+- 12/5`
Since θ lies in the fourth quadrant tan θ is negative.
∴ tan θ = `- 12/5`
cos θ = `1/sectheta = 5/13`
We know sin2θ + cos2θ = 1
`sin^2theta + (5/13)^2` = 1
sin2θ = `1 - 25/169`
sin2θ = `(169 - 25)/169 = 144/169`
sin θ = `+- 12/13`
Since θ lies in the fourth quadrant sin θ is negative.
∴ sin θ = `- 12/13`
sin θ = `- 12/13`, cosec θ = `1/sintheta = - 13/12`
cos θ = `5/13`, sec θ = `1/costheta = 13/5`
tan θ = `- 12/5`, cot θ = `1/tantheta = - 5/12`
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Prove that sin(π + θ) = − sin θ.
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that sin 105° + cos 105° = cos 45°
Show that tan 75° + cot 75° = 4
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a product
sin 75° sin 35°
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =