Advertisements
Advertisements
प्रश्न
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
उत्तर
cos(30° – A) cos(30° + A) + cos(45° – A) . cos(45° + A)
= cos(30° + A) cos(30° – A) + cos(45° + A) cos(45° – A)
= `1/2`[cos(30° + A + 30° – A) + cos(30° + A – (30° + A ))] + `1/2`[cos(45° + A + 45° – A) + cos(45° + A – (450 + A))
= `1/2`[cos 60° + cos(30° + A – 30° + A)] + `1/2`[cos 90° + cos(45° + A – 45° + A)]
= `1/2`[cos 60° + cos 2A] + `1/2`[cos 90° + 2A]
= `1/2 cos 60^circ + 1/2 cos 2"A" + 1/ cos 90^cir + 1/2 cos 2"A"`
= `1/2 xx 1/2 + cos 2"A" +1/2 xx 0`
= `1/4 + cos 2"A"`
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of `sin (-(11pi)/3)`
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that cos(π + θ) = − cos θ
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
sin 75° sin 35°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C