Advertisements
Advertisements
प्रश्न
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
उत्तर
`sin theta/2 sin (7theta)/2 = 1/2[2sin theta/2 sin (7theta)/2]`
= `1/2[cos (7theta - theta)/2 - cos (7theta + theta)/2]`
= `1/2(cos 3theta - cos 4theta)`
`sin (3theta)/2 sin (11theta)/2 = /2[2sin (3theta)/2 sin (11theta)/2]`
= `1/2[cos (11theta - 3theta)/2 - cos (11theta + 3theta)/2]`
= `1/2[cos4theta - cos7theta]`
L.H.S = `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2`
= `1/2[cos 3theta - cos 4theta) + 1/2[cos 4theta- cos 7theta]`
= `1/2[cos 3theta - cos 4theta + cos 4theta - cos 7theta]`
= ``1/2[cos3theta - cos 7theta]`
= `1/2[sin (7theta + 3theta)/2 sin (7theta - 3theta)/2]`
= sin 5θ sin 2θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
sin 75° sin 35°
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`