Advertisements
Advertisements
प्रश्न
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
उत्तर
`sin theta/2 sin (7theta)/2 = 1/2[2sin theta/2 sin (7theta)/2]`
= `1/2[cos (7theta - theta)/2 - cos (7theta + theta)/2]`
= `1/2(cos 3theta - cos 4theta)`
`sin (3theta)/2 sin (11theta)/2 = /2[2sin (3theta)/2 sin (11theta)/2]`
= `1/2[cos (11theta - 3theta)/2 - cos (11theta + 3theta)/2]`
= `1/2[cos4theta - cos7theta]`
L.H.S = `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2`
= `1/2[cos 3theta - cos 4theta) + 1/2[cos 4theta- cos 7theta]`
= `1/2[cos 3theta - cos 4theta + cos 4theta - cos 7theta]`
= ``1/2[cos3theta - cos 7theta]`
= `1/2[sin (7theta + 3theta)/2 sin (7theta - 3theta)/2]`
= sin 5θ sin 2θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
sin 75° sin 35°
Express the following as a product
cos 65° + cos 15°
Express the following as a product
sin 50° + sin 40°
Express the following as a product
cos 35° – cos 75°
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =