Advertisements
Advertisements
प्रश्न
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
उत्तर
L.H.S (1 + sec 2θ) = `1 + 1/(cos2theta) + (cos 2theta + 1)/(cos 2theta)`
= `(2cos^2theta)/(cos 2theta)`
(1 + sec 4θ) = `1 + 1/(cos 4theta)`
= `(cos 4theta + 1)/(cos 4theta)`
= `(2 cos^2 (2theta))/(cos 4theta)`
(1 + sec 2nθ) = `1 + 1/(2^"n" theta)`
= `(cos 2^"n" theta + 1)/(2^"n" theta)`
= `(2 cos^2 2^("n" - 1) theta)/(cos 2^"n" theta)`
(1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ)
= `(2^"n" cos^2 theta)/(cos 2theta) * (cos^2 2theta)/(cos 4 theta) ... (cos^2 2^("n" - 1) theta)/(cos 2^"n" theta)`
= `(2^"n" cos theta)/(cos 2^"n" theta) {cos theta* cos 2theta ... cos 2^("n" - 1) theta}`
= `(2^"n" costheta{sin 2^"n"theta})/(2^"n" sintheta cos 2^"n" theta)`
= tan 2nθ . cosθ
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
sin 4x cos 2x
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to