Advertisements
Advertisements
Question
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Solution
L.H.S (1 + sec 2θ) = `1 + 1/(cos2theta) + (cos 2theta + 1)/(cos 2theta)`
= `(2cos^2theta)/(cos 2theta)`
(1 + sec 4θ) = `1 + 1/(cos 4theta)`
= `(cos 4theta + 1)/(cos 4theta)`
= `(2 cos^2 (2theta))/(cos 4theta)`
(1 + sec 2nθ) = `1 + 1/(2^"n" theta)`
= `(cos 2^"n" theta + 1)/(2^"n" theta)`
= `(2 cos^2 2^("n" - 1) theta)/(cos 2^"n" theta)`
(1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ)
= `(2^"n" cos^2 theta)/(cos 2theta) * (cos^2 2theta)/(cos 4 theta) ... (cos^2 2^("n" - 1) theta)/(cos 2^"n" theta)`
= `(2^"n" cos theta)/(cos 2^"n" theta) {cos theta* cos 2theta ... cos 2^("n" - 1) theta}`
= `(2^"n" costheta{sin 2^"n"theta})/(2^"n" sintheta cos 2^"n" theta)`
= tan 2nθ . cosθ
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Prove that cos(π + θ) = − cos θ
Prove that sin(π + θ) = − sin θ.
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
sin 50° + sin 40°
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`