Advertisements
Advertisements
Question
Express the following as a product
sin 50° + sin 40°
Solution
We know sin C + sin D = `2 sin ("C" + "D")/2 * cos ("C" - "D")/2`
Take C = 50°, D = 40°
sin 50° + sin 40° = `2sin((50^circ + 40^circ)/2) * cos((50^circ - 40^circ)/2)`
sin 50° + sin 40° = `2cos(90^circ/2) * cos(10^circ/2)`
sin 50° + sin 40° = 2 cos(45°) . cos(5°)
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of sin 105°
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Show that tan 75° + cot 75° = 4
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B