Advertisements
Advertisements
प्रश्न
Express the following as a product
sin 50° + sin 40°
उत्तर
We know sin C + sin D = `2 sin ("C" + "D")/2 * cos ("C" - "D")/2`
Take C = 50°, D = 40°
sin 50° + sin 40° = `2sin((50^circ + 40^circ)/2) * cos((50^circ - 40^circ)/2)`
sin 50° + sin 40° = `2cos(90^circ/2) * cos(10^circ/2)`
sin 50° + sin 40° = 2 cos(45°) . cos(5°)
APPEARS IN
संबंधित प्रश्न
Find the values of cot(660°)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of tan `(7pi)/12`
Prove that cos(π + θ) = − cos θ
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a sum or difference
2 sin 10θ cos 2θ
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to