Advertisements
Advertisements
प्रश्न
Express the following as a product
cos 35° – cos 75°
उत्तर
We know sin C + sin D = `2 sin ("C" + "D")/2 * sin ("D" - "C")/2`
Take C = 35°, D = 75°
cos 35° – cos 75° = `2sin((35^circ + 75^circ)/2) * sin((75^circ - 35^circ)/2)`
cos 35° – cos 75° = `2sin(110^circ/2) * sin(40^circ/2)`
cos 35° – cos 75° = 2 sin 55° sin 20°
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
Find the values of tan(1050°)
Find the values of cot(660°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Express the following as a sum or difference
sin 5θ sin 4θ
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to