Advertisements
Advertisements
प्रश्न
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
उत्तर
`(pi/15 = 12^circ)`
L.H.S = cos 12° cos 24° cos 36° cos 48° cos 60° cos 72° cos 84° .....(1)
Consider (we know that)
cos A cos(60° + A) cos(60° – A)
= `cos "A" [cos^2 60^circ - sin^2"A"]`
= `cos "A"[1/4 - (1 - cos^2"A")]`
cos A cos(60° + A) cos(60° – A) = `1/4 cos 3"A"`
= `cos "A"[cos^2"A" - 3/4]`
= `(4cos^3 "A" - 3 cos "A")/4`
cos 12° cos 72° cos 48° = `1/4 cos 3(12^circ)`
= `1/4 cos 36^circ`
= `1/4[(sqrt(5) + 1)/4]`
Similarly cos 24° cos 84° cos 36° = `1/4 cos3 (12^circ)`
= `1/4 cos 72^circ`
= `1/4 cos(90^circ - 18^circ)`
= `1/4 sin 18^circ`
= `1/4[(sqrt(5) - 1)/4]`
(1) ⇒ L.H.S = `1/4[(sqrt(5) + 1)/4] * 1/4[(sqrt(5) - 1)/4] * 1/2`
= `1/4((sqrt(5) + 1)/4 * (sqrt(5) - 1)/4) * 1/2`
= `(5 - 1)/(128 xx 4)`
= `1/128`
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that cos(π + θ) = − cos θ
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
sin 5θ sin 4θ
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =