Advertisements
Advertisements
प्रश्न
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
उत्तर
`(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x) = (1/2 [sin 9x + sin 7x] - 1/2 [sin 9x + sin 3x])/(1/2 [cos 3x + cos x] - 1/2 [cos x - cos 3x])`
= `(sin 9x + sin 7x - sin 9x - sin 3x)/(cos 3x + cos x - cos x + cos 7x)`
= `(sin 7x - sin 3x)/(cos 3x + cos 7x)`
= `(sin 7x - sin 3x)/(cos 7x + cos 3x)`
= `(2cos((7x + 3x)/2) * sin ((7x 3x)/2))/(2cos((7x + 3x)/2) * cos((7x - 3x)/2)`
= `(2 cos 5x * sin 2x)/(2 cos 5x * cos 2x)`
= `(sin 2x)/(cos 2x)`
= tan 2x
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of cos 105°.
Prove that sin(π + θ) = − sin θ.
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`