Advertisements
Advertisements
प्रश्न
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
उत्तर
`(cot(180^circ + theta) sin(90^circ - theta) * cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))`
= `(cot theta* costheta costheta)/(- cos theta xx - tantheta xx "cosec" theta)`
= `(cot theta * cos^2theta)/(cos theta tan theta "cosec" theta)`
= `(cot theta * cos^2theta)/(cos theta * sintheta/costheta * 1/sin theta)`
= `cos^2theta * cottheta`
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of cos 105°.
Find the value of tan `(7pi)/12`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1