Advertisements
Advertisements
प्रश्न
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
उत्तर
Taking (n + 1)θ = A and (n – 1)θ = B
L.H.S = sin A sin B + cos A cos B
= cos(A – B)
= cos[(n + 1) – (n – 1)]θ
= cos(n + 1 – n + 1)θ
= cos 2θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of cot(660°)
Find the values of `sin (-(11pi)/3)`
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Express the following as a product
sin 75° sin 35°
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1