Advertisements
Advertisements
प्रश्न
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
उत्तर
sin (45° + θ) – sin (45° – θ) = `sqrt(2) sin θ`
sin(45° + θ) – sin(45° – θ) = (sin 45° cos θ + cos 45° sin θ) – (sin 45° cos θ + cos 45° sin θ)
= sin 45° cos θ + cos 45° sin θ – sin 45° cos θ + cos 45° sin θ
= 2 cos 45° sin θ
= `2 xx 1/sqrt(2) sin theta`
= `2/sqrt(2) xx sqrt(2)/sqrt(2) xx sin theta`
sin(45° + θ) – sin(45° – θ) = `(2sqrt(2))/2 sin theta`
= `sqrt(2) sin theta`
APPEARS IN
संबंधित प्रश्न
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Express the following as a product
cos 35° – cos 75°
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =