हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

If cos(α – β) + cos(β – γ) + cos(γ – α) = -32, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0

योग

उत्तर

⇒ Given cos(α – β) + cos(β – γ) + 2cos(γ – α) = `- 3/2`

2 cos(α – β) + 2cos(β – γ) + 2cos(γ – α) = – 3

2cos(α – β) + 2cos(β – γ) + 2cos(γ – α) + 3 = 0

[2 cos α cos β + 2 sin α sin β] + [2 cos β cos γ + 2 sin β sin γ] + [2 cos γ cos α + sin γ sin α] + 3 = 0

= [2 cos α cos β + 2 cos β cos γ + 2 cos γ cos α] + [2 sin α sin β + 2 sin β sin γ + 2 sin γ sin α] + (sin2 α + cos2 α) + (sin2 β + cos2 β) + (sin2 γ + cos2 γ) = 0

⇒ (cos2 α + cos2 β + cos2 γ + 2 cos α cos β + 2 cos β cos γ + 2 cos γ cos α) + (sin2 α + sin2 β) + (sin2 γ + 2 sin α sin β + 2 sin β sin γ + 2 sin γ sin α) = 0

(cos α + cos β + cos γ)2 + (sin α + sin β + sin γ)2 = 0

= (cos α + cos β + cos γ) = 0 and sin α + sin β + sin γ = 0

Hence proved

shaalaa.com
Trigonometric Functions and Their Properties
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.4 [पृष्ठ १०९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.4 | Q 19 | पृष्ठ १०९

संबंधित प्रश्न

Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant


Show that `sin^2  pi/18 + sin^2  pi/9 + sin^2  (7pi)/18 + sin^2  (4pi)/9` = 2


If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)


Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`


Prove that cos(π + θ) = − cos θ


Prove that sin(π + θ) = − sin θ.


Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`


Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)


Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`


Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ


If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2


Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ


Prove that `32(sqrt(3)) sin  pi/48  cos  pi/48  cos  pi/24  cos  pi/12  cos  pi/6` = 3


Express the following as a sum or difference
sin 4x cos 2x


Show that `cos  pi/15  cos  (2pi)/15  cos  (3pi)/15  cos  (4pi)/15  cos  (5pi)/15  cos  (6pi)/15  cos  (7pi)/15 = 1/128`


Prove that `sin  theta/2 sin  (7theta)/2 + sin  (3theta)/2 sin  (11theta)/2` =  sin 2θ sin 5θ


Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)


Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to


Choose the correct alternative:
`(1 + cos  pi/8) (1 + cos  (3pi)/8) (1 + cos  (5pi)/8) (1 + cos  (7pi)/8)` =


Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) = 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×