Advertisements
Advertisements
प्रश्न
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
उत्तर
Given sin x = `15/17, 0 < x < pi/2`
We have cos2x + sin2x = 1
∴ cos2x = 1 – sin2x
= `1 - (15/17)^2`
= `1 - 225/289`
cos2x = `(289 - 225)/289 = 64/289`
cos x = `+- sqrt(64/289)`
= `+- 8/17`
Given that `0 < x < pi/2`, that is x lies in the first quadrant
∴ cos x is positive.
cos x = `8/17`
Also given cos y = `12/13, 0 < x < pi/2`
We have cos2y + sin2y = 1
sin2y = 1 – cos2y
sin2y = `1 - (12/13)^2 = 1 - 14/169`
sin2y = `(169 - 144)/169 = 25/169`
sin y = `+- sqrt(25/169) = +- 5/13`
Since `0 < y < pi/2, y lies in the first quadrant sin y is positive.
∴ sin y = `5/13`
sin x = `15/17`
sin y = `5/13`
cos x = `8/17`
cos y = `12/13`
tan(x + y)
tan x = `sinx/cosx = (15/17)/(8/17) = 15/8`
tan y = `siny/cosy = (5/13)/(12/13) = 5/12`
tan(x + y) = `(tanx + tany)/(1 - tanx tany)`
= `(15/8 + 5/12)/(1 - 15/8*5/12)`
= `((180 + 40)/96)/((96 - 75)/96)`
tan(x + y) = `220/21`
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =