हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

If sin x = 1517 and cos y = 1213,0<x<π2,0<y<π2, find the value of tan(x + y) - Mathematics

Advertisements
Advertisements

प्रश्न

If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)

योग

उत्तर

Given sin x = `15/17, 0 < x < pi/2`

We have cos2x + sin2x = 1

∴ cos2x = 1 – sin2x

= `1 - (15/17)^2`

= `1 - 225/289`

cos2x = `(289 - 225)/289 = 64/289`

cos x = `+-  sqrt(64/289)`

= `+-  8/17`

Given that `0 < x < pi/2`, that is x lies in the first quadrant

∴ cos x is positive.

cos x = `8/17`

Also given cos y = `12/13, 0 < x < pi/2`

We have cos2y + sin2y = 1

sin2y = 1 – cos2y

sin2y = `1 - (12/13)^2 = 1 - 14/169`

sin2y = `(169 - 144)/169 = 25/169`

sin y = `+-  sqrt(25/169) = +-  5/13`

Since `0 < y < pi/2, y lies in the first quadrant sin y is positive.

∴ sin y = `5/13`

sin x = `15/17`

sin y = `5/13`

cos x = `8/17`

cos y = `12/13`

tan(x + y)

tan x = `sinx/cosx = (15/17)/(8/17) = 15/8`

tan y = `siny/cosy = (5/13)/(12/13) = 5/12`

tan(x + y) = `(tanx + tany)/(1 - tanx tany)`

= `(15/8 + 5/12)/(1 - 15/8*5/12)`

= `((180 + 40)/96)/((96 - 75)/96)`

tan(x + y) = `220/21`

shaalaa.com
Trigonometric Functions and Their Properties
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.4 [पृष्ठ १०९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.4 | Q 1. (iii) | पृष्ठ १०९

संबंधित प्रश्न

Find the values of cos(300°)


Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant


Show that `sin^2  pi/18 + sin^2  pi/9 + sin^2  (7pi)/18 + sin^2  (4pi)/9` = 2


Prove that sin(A + B) sin(A – B) = sin2A – sin2B


Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A


Prove that cos 8θ cos 2θ = cos25θ – sin2


Show that tan(45° + A) =  `(1 + tan"A")/(1 - tan"A")`


Find the value of cos 2A, A lies in the first quadrant, when tan A  `16/63`


If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`


Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`


Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1


Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x


Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x  cos 7x)` = tan 4x


Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`


If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos  "A"/2 cos  "B"/2 sin  "C"/2`


If A + B + C = 180°, prove that `tan  "A"/2  tan  "B"/2 + tan  "B"/2 tan  "C"/2 + tan  "C"/2 tan  "A"/2` = 1


If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos  "A"/2 cos  "B"/2 cos  "C"/2`


If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sinB + sinC = 1


Choose the correct alternative:
`(1 + cos  pi/8) (1 + cos  (3pi)/8) (1 + cos  (5pi)/8) (1 + cos  (7pi)/8)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×