Advertisements
Advertisements
प्रश्न
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
उत्तर
L.H.S = (sin A + sin B) + sin C
= `2sin ("A" + "B")/2 cos(("A" - "B")/2) + 2sin "C"/2 cos "C"/2`
= `2cos "C"/2[cos(("A" - "B")/2) + sin "C"/2]`
= `2cos "C"/2[cos(("A" - "B")/2) + cos ("A" + "B")/2]`
= `2cos "C"/2[2cos "A"/2 cos "B"/2]`
= `4cos "A"/2 cos "B"/2 cos "C"/2`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of sin (– 1110°)
Find the values of tan(1050°)
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a product
sin 50° + sin 40°
Express the following as a product
cos 35° – cos 75°
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to